\( \newcommand{\br}[1]{\left( #1\right)} \newcommand{\logpar}[1]{\log\left( #1\right)} \newcommand{\cospar}[1]{\cos\left( #1\right)} \newcommand{\sinpar}[1]{\sin\left( #1\right)} \newcommand{\tanpar}[1]{\tan\left( #1\right)} \newcommand{\arcsinpar}[1]{\sin^{-1}\!\left( #1\right)} \newcommand{\arccospar}[1]{\cos^{-1}\!\left( #1\right)} \newcommand{\arctanpar}[1]{\tan^{-1}\!\left( #1\right)} \newcommand{\asin}[1]{\sin^{-1}\! #1} \newcommand{\acos}[1]{\cos^{-1}\! #1} \newcommand{\atan}[1]{\tan^{-1}\! #1} \newcommand{\asinh}[1]{\sinh^{-1}\! #1} \newcommand{\acosh}[1]{\cosh^{-1}\! #1} \newcommand{\atanh}[1]{\tanh^{-1}\! #1} \newcommand{\logten}[1]{\log_{10}\! #1} \definecolor{explaination}{RGB}{0, 166, 226} \newcommand{\ubrace}[2][u]{ { \color{explaination}{\underbrace{ {\color{black}{#2}} }_{#1}} } } \newcommand{\obrace}[2][u]{ { \color{explaination}{\overbrace{ {\color{black}{#2}} }^{#1}} } } \definecolor{highlight}{RGB}{181, 41, 118} \newcommand{\xplain}[1]{{ \textcolor{explaination} { \footnotesize{ #1 \newline}}}} \newcommand{\hilite}[1]{{ \textcolor{highlight} { { #1 }}}} \definecolor{lightergray}{gray}{.675} \newcommand{\hide}[1]{{ \textcolor{lightergray} { \footnotesize{ #1 \newline}}}} \newcommand{\mth}[1]{ { \textcolor{black} { { \small #1 } } } } \)

Übung: Supplementwinkel, Ergänzungswinkel

randFromArray([ ["O", "A", "B", "C"], ["O", "L", "M", "N"], ["P", "Q", "R", "S"] ]) randRange(1, 179) "\\angle " + A + O + B "\\angle " + B + O + C shuffle([ ANGLE_BOT, ANGLE_TOP ])

Wenn m \angle A + O + C = 180^\circ und m ANGLE_ONE = ANGLE^\circ, was ist m ANGLE_TWO, in Grad?

init({ range: [ [-7, 7], [-2, 6] ], scale: 40 }); var DISP_ANGLE = Math.min( Math.max( 10, ANGLE ), 170 ); if ( ANGLE_ONE !== ANGLE_BOT ) { DISP_ANGLE = 180 - DISP_ANGLE; arc( [ 0, 0 ], 1, DISP_ANGLE, 180 ); DISP_ANGLE *= PI / 180; label( [ 2 * cos( DISP_ANGLE + ( PI - DISP_ANGLE) / 2 ) - .5, 2 * sin( DISP_ANGLE + ( PI - DISP_ANGLE) / 2 )], ANGLE + "^\\circ" ); } else { arc( [ 0, 0 ], 1, 0, DISP_ANGLE ); DISP_ANGLE *= PI / 180; label( [ 2 * cos( DISP_ANGLE / 2 ) + .5 , 2 * sin( DISP_ANGLE / 2 )], ANGLE + "^\\circ" ); } path([ [-5, 0], [5, 0] ]); path([ [0, 0], [5 * cos( DISP_ANGLE ), 5 * sin( DISP_ANGLE )] ]); label( [0, 0], O, "below" ); label( [5, 0], A, "right" ); label( [-5, 0], C, "left" ); // somewhat ick to make it look nice label( [5.35 * cos( DISP_ANGLE ), 5.35 * sin( DISP_ANGLE )], B );
180 - ANGLE

In dem Diagramm wissen wir, dass ANGLE_BOT und ANGLE_TOP Supplementwinkel sind.

Daher ist m ANGLE_BOT + m ANGLE_TOP = 180^\circ.

Somit ist m ANGLE_TWO = 180^\circ - m ANGLE_ONE = 180^\circ - ANGLE^\circ = 180 - ANGLE^\circ.