Übung: Komplexe Zahlen dividieren

randRange(-5, 5) randRange(-5, 5) randRange(-5, 5) randRange(-5, 5) ANSWER_REAL * B_REAL - ANSWER_IMAG * B_IMAG ANSWER_REAL * B_IMAG + ANSWER_IMAG * B_REAL B_REAL * B_REAL + B_IMAG * B_IMAG (A_REAL * B_REAL) + (A_IMAG * B_IMAG) (A_IMAG * B_REAL) - (A_REAL * B_IMAG) complexNumber(ANSWER_REAL, ANSWER_IMAG) complexNumber(A_REAL, A_IMAG) complexNumber(B_REAL, B_IMAG) -B_IMAG complexNumber(B_REAL, B_CONJUGATE_IMAG)

Dividiere die folgenden komplexen Zahlen.

\large\qquad \dfrac{A_REP}{B_REP}

ANSWER_REAL + ANSWER_IMAGi

Da wir nur durch einen einzigen Term teilen, können wir jeden Term im ZĂ€hler fĂŒr sich separat teilen.

\qquad \dfrac{A_REP}{B_REP} = \dfrac{A_REAL}{B_REP} A_IMAG > 0 ? "+" : "-" \dfrac{abs(A_IMAG) === 1 ? "" : abs(A_IMAG)i}{B_REP}

Durch Vereinfachen erhalten wir ANSWER_REP.

Faktorisiere 1/i.

\dfrac{A_REAL}{B_REP} A_IMAG > 0 ? "+" : "-" \dfrac{abs(A_IMAG) === 1 ? "" : abs(A_IMAG)i}{B_REP} = \dfrac 1i \left( \dfrac{A_REAL}{B_IMAG} A_IMAG > 0 ? "+" : "-" \dfrac{abs(A_IMAG) === 1 ? "" : abs(A_IMAG)i}{B_IMAG} \right) = \dfrac 1i (complexNumber(-ANSWER_IMAG, ANSWER_REAL))

Nach der Vereinfachung ist 1/i gleich -i. Wir haben somit jetzt:

\dfrac 1i (complexNumber(-ANSWER_IMAG, ANSWER_REAL)) = -i (complexNumber(-ANSWER_IMAG, ANSWER_REAL)) = ANSWER_IMAGi + -ANSWER_REALi^2 = ANSWER_REP

FĂŒr die Division werden ZĂ€hler und Nenner mit dem komplex konjugierten Teil des Nenners erweitert. Dieser ist \green{CONJUGATE}.

\qquad \dfrac{A_REP}{B_REP} = \dfrac{A_REP}{B_REP} \cdot \dfrac{\green{CONJUGATE}}{\green{CONJUGATE}}

Wir können den Nenner mithilfe der binomischen Formeln Vereinfachen: (a + b) \cdot (a - b) = a^2 - b^2.

\qquad \dfrac{(A_REP) \cdot (CONJUGATE)} {(B_REP) \cdot (CONJUGATE)} = \dfrac{(A_REP) \cdot (CONJUGATE)} {negParens(B_REAL)^2 - (B_IMAGi)^2}

Berechne die Quadrate im Nenner und subtrahiere sie.

\qquad \dfrac{(A_REP) \cdot (CONJUGATE)} {(B_REAL)^2 - (B_IMAGi)^2} =

\qquad \dfrac{(A_REP) \cdot (CONJUGATE)} {B_REAL * B_REAL + B_IMAG * B_IMAG} =

\qquad \dfrac{(A_REP) \cdot (CONJUGATE)} {B_REAL * B_REAL + B_IMAG * B_IMAG}

Beachte: Der ZĂ€hler hat nun keinen ImaginĂ€rteil mehr und ist daher eine reelle Zahl. Wir haben damit eine Divisionsaufgabe in eine Multiplikationsaufgabe ĂŒberfĂŒhrt.

Nun berechnen wir die zwei Faktoren im ZĂ€hler.

\qquad \dfrac{(\blue{A_REP}) \cdot (\red{CONJUGATE})} {DENOMINATOR} =

\qquad \dfrac{\blue{A_REAL} \cdot \red{negParens(B_REAL)} + \blue{A_IMAG} \cdot \red{negParens(B_REAL) i} + \blue{A_REAL} \cdot \red{B_CONJUGATE_IMAG i} + \blue{A_IMAG} \cdot \red{B_CONJUGATE_IMAG i^2}} {DENOMINATOR}

Produkte berechnen.

\qquad \dfrac{A_REAL * B_REAL + A_IMAG * B_REALi + A_REAL * B_CONJUGATE_IMAGi + A_IMAG * B_CONJUGATE_IMAG i^2} {DENOMINATOR}

Als Letztes vereinfachen wir noch den Bruch.

\qquad \dfrac{A_REAL * B_REAL + A_IMAG * B_REALi + A_REAL * B_CONJUGATE_IMAGi - A_IMAG * B_CONJUGATE_IMAG} {DENOMINATOR} = \dfrac{REAL_NUMERATOR + IMAG_NUMERATORi} {DENOMINATOR} = ANSWER_REP