\( \newcommand{\br}[1]{\left( #1\right)} \newcommand{\logpar}[1]{\log\left( #1\right)} \newcommand{\cospar}[1]{\cos\left( #1\right)} \newcommand{\sinpar}[1]{\sin\left( #1\right)} \newcommand{\tanpar}[1]{\tan\left( #1\right)} \newcommand{\arcsinpar}[1]{\sin^{-1}\!\left( #1\right)} \newcommand{\arccospar}[1]{\cos^{-1}\!\left( #1\right)} \newcommand{\arctanpar}[1]{\tan^{-1}\!\left( #1\right)} \newcommand{\asin}[1]{\sin^{-1}\! #1} \newcommand{\acos}[1]{\cos^{-1}\! #1} \newcommand{\atan}[1]{\tan^{-1}\! #1} \newcommand{\asinh}[1]{\sinh^{-1}\! #1} \newcommand{\acosh}[1]{\cosh^{-1}\! #1} \newcommand{\atanh}[1]{\tanh^{-1}\! #1} \newcommand{\logten}[1]{\log_{10}\! #1} \definecolor{explaination}{RGB}{0, 166, 226} \newcommand{\ubrace}[2][u]{ { \color{explaination}{\underbrace{ {\color{black}{#2}} }_{#1}} } } \newcommand{\obrace}[2][u]{ { \color{explaination}{\overbrace{ {\color{black}{#2}} }^{#1}} } } \definecolor{highlight}{RGB}{181, 41, 118} \newcommand{\xplain}[1]{{ \textcolor{explaination} { \footnotesize{ #1 \newline}}}} \newcommand{\hilite}[1]{{ \textcolor{highlight} { { #1 }}}} \definecolor{lightergray}{gray}{.675} \newcommand{\hide}[1]{{ \textcolor{lightergray} { \footnotesize{ #1 \newline}}}} \newcommand{\mth}[1]{ { \textcolor{black} { { \small #1 } } } } \)

Übung: Funktionen auswerten

randRange(-6, 6) randRange(-6, 6)
generateFunctionPath(END_F) generateFunctionPath(END_G) randRangeExclude(-10, 10, [-1, 0]) randRangeExclude(-10, 10, [-1, 0]) randRange(-9, 9) F_PATH[CORRECT_X + 10][1] randRange(-9, 9) G_PATH[CORRECT_GX + 10][1]

Gegeben sind die Funktionen f(x) und g(x), die unten aufgetragen sind.

Bestimme F_COEF \cdot f(CORRECT_X) + G_COEF \cdot g(CORRECT_GX)

graphInit({ range: 10, scale: 20, tickStep: 1, labelStep: 1, unityLabels: false, labelFormat: function( s ) { return "\\small{" + s + "}"; }, axisArrows: "<->" }); label([10, END_F], "f(x)", "right", {color: BLUE}); label([10, END_G], "g(x)", "right", {color: RED}); path(F_PATH, {stroke: BLUE}); path(G_PATH, {stroke: RED, "stroke-dasharray": "-"});

F_COEF * CORRECT_Y + G_COEF * CORRECT_GY

Bestimme f(CORRECT_X) und g(CORRECT_GX).

\begin{align*} f(CORRECT_X) &= CORRECT_Y \\ g(CORRECT_GX) &= CORRECT_GY \end{align*}

F_COEF f(CORRECT_X) + G_COEF g(CORRECT_GX)

= (F_COEF) (CORRECT_Y) + (G_COEF) (CORRECT_GY)

= F_COEF * CORRECT_Y + G_COEF * CORRECT_GY

= F_COEF * CORRECT_Y + G_COEF * CORRECT_GY