\( \newcommand{\br}[1]{\left( #1\right)} \newcommand{\logpar}[1]{\log\left( #1\right)} \newcommand{\cospar}[1]{\cos\left( #1\right)} \newcommand{\sinpar}[1]{\sin\left( #1\right)} \newcommand{\tanpar}[1]{\tan\left( #1\right)} \newcommand{\arcsinpar}[1]{\sin^{-1}\!\left( #1\right)} \newcommand{\arccospar}[1]{\cos^{-1}\!\left( #1\right)} \newcommand{\arctanpar}[1]{\tan^{-1}\!\left( #1\right)} \newcommand{\asin}[1]{\sin^{-1}\! #1} \newcommand{\acos}[1]{\cos^{-1}\! #1} \newcommand{\atan}[1]{\tan^{-1}\! #1} \newcommand{\asinh}[1]{\sinh^{-1}\! #1} \newcommand{\acosh}[1]{\cosh^{-1}\! #1} \newcommand{\atanh}[1]{\tanh^{-1}\! #1} \newcommand{\logten}[1]{\log_{10}\! #1} \definecolor{explaination}{RGB}{0, 166, 226} \newcommand{\ubrace}[2][u]{ { \color{explaination}{\underbrace{ {\color{black}{#2}} }_{#1}} } } \newcommand{\obrace}[2][u]{ { \color{explaination}{\overbrace{ {\color{black}{#2}} }^{#1}} } } \definecolor{highlight}{RGB}{181, 41, 118} \newcommand{\xplain}[1]{{ \textcolor{explaination} { \footnotesize{ #1 \newline}}}} \newcommand{\hilite}[1]{{ \textcolor{highlight} { { #1 }}}} \definecolor{lightergray}{gray}{.675} \newcommand{\hide}[1]{{ \textcolor{lightergray} { \footnotesize{ #1 \newline}}}} \newcommand{\mth}[1]{ { \textcolor{black} { { \small #1 } } } } \)

Übung: Bruchgleichungen lösen

randVar() rand(2) ? 1 : -1

Löse nach X auf,

NUMERCONST < 1 ? randRange(1, 5) : randRange(0, 5)
randRange(2, 10) randRangeWeighted(1, 5, 1, 0.25) randRangeWeighted(-10, 10, 0, 0.25) randRange(-10, 10)
new RationalExpression([[NUMERCOEFF, X], [NUMERCONST]]) new RationalExpression([[DENOMCOEFF, X], [DENOMCONST]]) DENOMINATOR.multiply(CONSTANT) DENOMCONST * CONSTANT - SIGN * NUMERCONST SIGN * NUMERCOEFF - DENOMCOEFF * CONSTANT

- \dfrac{NUMERATOR}{DENOMINATOR} = CONSTANT

-(NUMERATOR) NUMERATOR = CONSTANT(DENOMINATOR)

NUMERATOR.multiply(SIGN) = PRODUCT

new RationalExpression([[FINALCOEFF, X], SIGN * NUMERCONST]) = DENOMCONST * CONSTANT

new Term(FINALCOEFF, X) = FINALCONST

SIGN * NUMERCONST = new RationalExpression([[-FINALCOEFF, X], DENOMCONST * CONSTANT])

-FINALCONST = new Term(-FINALCOEFF, X)

new Term(-FINALCOEFF, X) = -FINALCONST

X = fraction(FINALCONST, FINALCOEFF)

Vereinfachen:

X = fractionReduce(FINALCONST, FINALCOEFF)

NUMERCONST < 1 ? randRange(1, 5) : randRange(0, 5)
randRange(2, 10) randRangeWeighted(1, 5, 1, 0.25) randRangeWeighted(-10, 10, 0, 0.25) randRange(-10, 10)
new RationalExpression([[NUMERCOEFF, X], [NUMERCONST]]) new RationalExpression([[DENOMCOEFF, X], [DENOMCONST]]) NUMERATOR.multiply(CONSTANT * SIGN) DENOMCONST - SIGN * NUMERCONST * CONSTANT SIGN * NUMERCOEFF * CONSTANT - DENOMCOEFF

- \dfrac{NUMERATOR}{DENOMINATOR} = \dfrac{1}{CONSTANT}

-(NUMERATOR) NUMERATOR.multiply(SIGN) = \dfrac{DENOMINATOR}{CONSTANT}

Beide Seiten mit CONSTANT multiplizieren.

CONSTANT * SIGN(NUMERATOR) PRODUCT = DENOMINATOR

PRODUCT = DENOMINATOR

new RationalExpression([[FINALCOEFF, X], SIGN * NUMERCONST * CONSTANT]) = DENOMCONST

new Term(FINALCOEFF, X) = FINALCONST

SIGN * NUMERCONST * CONSTANT = new RationalExpression([[-FINALCOEFF, X], DENOMCONST])

-FINALCONST = new Term(-FINALCOEFF, X)

new Term(-FINALCOEFF, X) = -FINALCONST

X = fraction(FINALCONST, FINALCOEFF)

Vereinfachen.

X = fractionReduce(FINALCONST, FINALCOEFF)

FINALCONST / FINALCOEFF

Beide Seiten der Gleichung mit DENOMINATOR multiplizieren.