Übung: Wurzeln addieren und subtrahieren
Vereinfache folgenden Ausdruck:
\sqrt{A} + \sqrt{B}
Als erstes versuchen wir, Quadratzahlen aus den Wurzeln zu faktorisieren.
= \sqrt{A} + \sqrt{B}
= \sqrt{pow( A_COEFF, 2 ) \cdot NUM} + \sqrt{pow( B_COEFF, 2 ) \cdot NUM}
Faktoren können als eigenständige Wurzeln geschrieben werden. Dannach vereinfachen wir die Ausdrücke noch.
= \sqrt{pow( A_COEFF, 2 )} \cdot \sqrt{NUM} + \sqrt{pow( B_COEFF, 2 )} \cdot \sqrt{NUM}
= A_COEFF\sqrt{NUM} + B_COEFF\sqrt{NUM}
Als Letztes vereinfachen wir den Ausdruck noch mithilfe der Potenzgesetze.
= ( A_COEFF + B_COEFF )\sqrt{NUM} = A_COEFF + B_COEFF\sqrt{NUM}
Vereinfache folgenden Ausdruck:
\sqrt{A} - \sqrt{B}
Als erstes versuchen wir, Quadratzahlen aus den Wurzeln zu faktorisieren.
= \sqrt{A} - \sqrt{B}
= \sqrt{pow( A_COEFF, 2 ) \cdot NUM} - \sqrt{pow( B_COEFF, 2 ) \cdot NUM}
Faktoren können als eigenständige Wurzeln geschrieben werden. Dannach vereinfachen wir die Ausdrücke noch.
= \sqrt{pow( A_COEFF, 2 )} \cdot \sqrt{NUM} - \sqrt{pow( B_COEFF, 2 )} \cdot \sqrt{NUM}
= A_COEFF\sqrt{NUM} - B_COEFF\sqrt{NUM}
Als Letztes vereinfachen wir den Ausdruck noch mithilfe der Potenzgesetze.
= ( A_COEFF - B_COEFF )\sqrt{NUM} = A_COEFF - B_COEFF\sqrt{NUM}
Vereinfache folgenden Ausdruck:
\sqrt{A}B_SIGN\sqrt{B}C_SIGN\sqrt{C}
Als erstes versuchen wir, Quadratzahlen aus den Wurzeln zu faktorisieren.
= \sqrt{A}B_SIGN\sqrt{B}C_SIGN\sqrt{C}
= \sqrt{pow( A_COEFF, 2 ) \cdot NUM}B_SIGN\sqrt{pow( B_COEFF, 2 ) \cdot NUM}C_SIGN\sqrt{pow( C_COEFF, 2 ) \cdot NUM}
Faktoren können als eigenständige Wurzeln geschrieben werden. Dannach vereinfachen wir die Ausdrücke noch.
= \sqrt{pow( A_COEFF, 2 )} \cdot \sqrt{NUM}B_SIGN\sqrt{pow( B_COEFF, 2 )} \cdot \sqrt{NUM}C_SIGN\sqrt{pow( C_COEFF, 2 )} \cdot \sqrt{NUM}
= A_COEFF\sqrt{NUM}B_SIGNabs( B_COEFF )\sqrt{NUM}C_SIGNabs( C_COEFF )\sqrt{NUM}
Als Letztes vereinfachen wir den Ausdruck noch mithilfe der Potenzgesetze.
= ( A_COEFF + B_COEFF + C_COEFF )\sqrt{NUM} = A_COEFF + B_COEFF + C_COEFF\sqrt{NUM} = 0