Lade Daten...
twoBasesOneRoot() VALS.base_1 VALS.base_2 random() < 0.75 VALS.root EXP_NEG ? BASE_D : BASE_N EXP_NEG ? BASE_N : BASE_D round( pow( EXP_NEG ? BASE_D : BASE_N, 1 / EXP_D ) ) round( pow( EXP_NEG ? BASE_N : BASE_D, 1 / EXP_D ) )

\Large fracParens( BASE_N, BASE_D )^{fracSmall( EXP_NEG ? -1 : 1, EXP_D )}

SOL_N / SOL_D

= fracParens( BASEF_N, BASEF_D )^{fracSmall( 1, EXP_D )}

Bestimme was in die Lücke gehört:
\Big(? \Big)^{EXP_D}=frac( BASEF_N, BASEF_D )

Bestimme was in die Lücke gehört:
\Big(\pink{frac( SOL_N, SOL_D )}\Big)^{EXP_D}=frac( BASEF_N, BASEF_D )

Daher ist fracParens( BASE_N, BASE_D )^{fracSmall( EXP_NEG ? -1 : 1, EXP_D )}=fracParens( BASEF_N, BASEF_D )^{fracSmall( 1, EXP_D )}=fraction( SOL_N, SOL_D, true, true, false, false )

So fracParens( BASEF_N, BASEF_D )^{fracSmall( 1, EXP_D )}=fraction( SOL_N, SOL_D,true, true, false, false )