\( \newcommand{\br}[1]{\left( #1\right)} \newcommand{\logpar}[1]{\log\left( #1\right)} \newcommand{\cospar}[1]{\cos\left( #1\right)} \newcommand{\sinpar}[1]{\sin\left( #1\right)} \newcommand{\tanpar}[1]{\tan\left( #1\right)} \newcommand{\arcsinpar}[1]{\sin^{-1}\!\left( #1\right)} \newcommand{\arccospar}[1]{\cos^{-1}\!\left( #1\right)} \newcommand{\arctanpar}[1]{\tan^{-1}\!\left( #1\right)} \newcommand{\asin}[1]{\sin^{-1}\! #1} \newcommand{\acos}[1]{\cos^{-1}\! #1} \newcommand{\atan}[1]{\tan^{-1}\! #1} \newcommand{\asinh}[1]{\sinh^{-1}\! #1} \newcommand{\acosh}[1]{\cosh^{-1}\! #1} \newcommand{\atanh}[1]{\tanh^{-1}\! #1} \newcommand{\logten}[1]{\log_{10}\! #1} \definecolor{explaination}{RGB}{0, 166, 226} \newcommand{\ubrace}[2][u]{ { \color{explaination}{\underbrace{ {\color{black}{#2}} }_{#1}} } } \newcommand{\obrace}[2][u]{ { \color{explaination}{\overbrace{ {\color{black}{#2}} }^{#1}} } } \definecolor{highlight}{RGB}{181, 41, 118} \newcommand{\xplain}[1]{{ \textcolor{explaination} { \footnotesize{ #1 \newline}}}} \newcommand{\hilite}[1]{{ \textcolor{highlight} { { #1 }}}} \definecolor{lightergray}{gray}{.675} \newcommand{\hide}[1]{{ \textcolor{lightergray} { \footnotesize{ #1 \newline}}}} \newcommand{\mth}[1]{ { \textcolor{black} { { \small #1 } } } } \)

Übung: Wurzeln addieren und subtrahieren

randFromArray([2, 3, 5, 6, 7, 10, 11, 13])
randRangeUnique( 1, 5, 2 ) pow( A_COEFF, 2 ) * NUM pow( B_COEFF, 2 ) * NUM

Vereinfache folgenden Ausdruck:

\sqrt{A} + \sqrt{B}

pow( A_COEFF + B_COEFF, 2 ) * NUM

Als erstes versuchen wir, Quadratzahlen aus den Wurzeln zu faktorisieren.

= \sqrt{A} + \sqrt{B}

= \sqrt{pow( A_COEFF, 2 ) \cdot NUM} + \sqrt{pow( B_COEFF, 2 ) \cdot NUM}

Faktoren können als eigenständige Wurzeln geschrieben werden. Dannach vereinfachen wir die Ausdrücke noch.

= \sqrt{pow( A_COEFF, 2 )} \cdot \sqrt{NUM} + \sqrt{pow( B_COEFF, 2 )} \cdot \sqrt{NUM}

= A_COEFF\sqrt{NUM} + B_COEFF\sqrt{NUM}

Als Letztes vereinfachen wir den Ausdruck noch mithilfe der Potenzgesetze.

= ( A_COEFF + B_COEFF )\sqrt{NUM} = A_COEFF + B_COEFF\sqrt{NUM}

randRange( 2, 5 ) randRange( 1, A_COEFF - 1 ) pow( A_COEFF, 2 ) * NUM pow( B_COEFF, 2 ) * NUM

Vereinfache folgenden Ausdruck:

\sqrt{A} - \sqrt{B}

pow( A_COEFF - B_COEFF, 2 ) * NUM

Als erstes versuchen wir, Quadratzahlen aus den Wurzeln zu faktorisieren.

= \sqrt{A} - \sqrt{B}

= \sqrt{pow( A_COEFF, 2 ) \cdot NUM} - \sqrt{pow( B_COEFF, 2 ) \cdot NUM}

Faktoren können als eigenständige Wurzeln geschrieben werden. Dannach vereinfachen wir die Ausdrücke noch.

= \sqrt{pow( A_COEFF, 2 )} \cdot \sqrt{NUM} - \sqrt{pow( B_COEFF, 2 )} \cdot \sqrt{NUM}

= A_COEFF\sqrt{NUM} - B_COEFF\sqrt{NUM}

Als Letztes vereinfachen wir den Ausdruck noch mithilfe der Potenzgesetze.

= ( A_COEFF - B_COEFF )\sqrt{NUM} = A_COEFF - B_COEFF\sqrt{NUM}

(function() { var coeffs = [1, 2, 3, 4, 5]; var shuffled = shuffle( coeffs, 3 ); shuffled[1] *= randRangeNonZero( -1, 1 ); shuffled[2] *= randRangeNonZero( -1, 1 ); while ( shuffled[0] + shuffled[1] + shuffled[2] <= 0 ) { shuffled[1] *= randRangeNonZero( -1, 1 ); shuffled[2] *= randRangeNonZero( -1, 1 ); } return shuffled; })() COEFFS[0] COEFFS[1] COEFFS[2] pow( A_COEFF, 2 ) * NUM pow( B_COEFF, 2 ) * NUM pow( C_COEFF, 2 ) * NUM B_COEFF > 0 ? "+" : "-" C_COEFF > 0 ? "+" : "-"

Vereinfache folgenden Ausdruck:

\sqrt{A}B_SIGN\sqrt{B}C_SIGN\sqrt{C}

pow( A_COEFF + B_COEFF + C_COEFF, 2 ) * NUM

Als erstes versuchen wir, Quadratzahlen aus den Wurzeln zu faktorisieren.

= \sqrt{A}B_SIGN\sqrt{B}C_SIGN\sqrt{C}

= \sqrt{pow( A_COEFF, 2 ) \cdot NUM}B_SIGN\sqrt{pow( B_COEFF, 2 ) \cdot NUM}C_SIGN\sqrt{pow( C_COEFF, 2 ) \cdot NUM}

Faktoren können als eigenständige Wurzeln geschrieben werden. Dannach vereinfachen wir die Ausdrücke noch.

= \sqrt{pow( A_COEFF, 2 )} \cdot \sqrt{NUM}B_SIGN\sqrt{pow( B_COEFF, 2 )} \cdot \sqrt{NUM}C_SIGN\sqrt{pow( C_COEFF, 2 )} \cdot \sqrt{NUM}

= A_COEFF\sqrt{NUM}B_SIGNabs( B_COEFF )\sqrt{NUM}C_SIGNabs( C_COEFF )\sqrt{NUM}

Als Letztes vereinfachen wir den Ausdruck noch mithilfe der Potenzgesetze.

= ( A_COEFF + B_COEFF + C_COEFF )\sqrt{NUM} = A_COEFF + B_COEFF + C_COEFF\sqrt{NUM} = 0