\( \newcommand{\br}[1]{\left( #1\right)} \newcommand{\logpar}[1]{\log\left( #1\right)} \newcommand{\cospar}[1]{\cos\left( #1\right)} \newcommand{\sinpar}[1]{\sin\left( #1\right)} \newcommand{\tanpar}[1]{\tan\left( #1\right)} \newcommand{\arcsinpar}[1]{\sin^{-1}\!\left( #1\right)} \newcommand{\arccospar}[1]{\cos^{-1}\!\left( #1\right)} \newcommand{\arctanpar}[1]{\tan^{-1}\!\left( #1\right)} \newcommand{\asin}[1]{\sin^{-1}\! #1} \newcommand{\acos}[1]{\cos^{-1}\! #1} \newcommand{\atan}[1]{\tan^{-1}\! #1} \newcommand{\asinh}[1]{\sinh^{-1}\! #1} \newcommand{\acosh}[1]{\cosh^{-1}\! #1} \newcommand{\atanh}[1]{\tanh^{-1}\! #1} \newcommand{\logten}[1]{\log_{10}\! #1} \definecolor{explaination}{RGB}{0, 166, 226} \newcommand{\ubrace}[2][u]{ { \color{explaination}{\underbrace{ {\color{black}{#2}} }_{#1}} } } \newcommand{\obrace}[2][u]{ { \color{explaination}{\overbrace{ {\color{black}{#2}} }^{#1}} } } \definecolor{highlight}{RGB}{181, 41, 118} \newcommand{\xplain}[1]{{ \textcolor{explaination} { \footnotesize{ #1 \newline}}}} \newcommand{\hilite}[1]{{ \textcolor{highlight} { { #1 }}}} \definecolor{lightergray}{gray}{.675} \newcommand{\hide}[1]{{ \textcolor{lightergray} { \footnotesize{ #1 \newline}}}} \newcommand{\mth}[1]{ { \textcolor{black} { { \small #1 } } } } \)

Übung: Verkettete Funktionen

shuffle(["f", "g", "h"]) ["x", "n", "t"] new Polynomial( randRange(0, 2), randRangeWeighted(1, 3, 3, 0.2), null, randFromArray(FUNC_VARIABLES), FUNC_NAMES[0] ) new CompositePolynomial( randRange(0, 2), randRangeWeighted(1, 3, 3, 0.2), null, randFromArray(FUNC_VARIABLES), FUNC_NAMES[1], INNER )
shuffle([INNER, OUTER]) shuffle([INNER, OUTER]) randRange(-10, 10) SOLVE_FOR[1].evalOf(VALUE) SOLVE_FOR[0].evalOf(INNER_VALUE)
  • FUNCTIONS[0].name(FUNCTIONS[0].variable) = FUNCTIONS[0].text()
  • FUNCTIONS[1].name(FUNCTIONS[1].variable) = FUNCTIONS[1].text()

SOLVE_FOR[0].name(SOLVE_FOR[1].name(VALUE)) = {?}

OUTER_VALUE

new CompositePolynomial( randRange(0, 2), randRange(1, 3), null, randFromArray(FUNC_VARIABLES), FUNC_NAMES[2], randFromArray([INNER, OUTER]) ) shuffle([INNER, OUTER, OUTER2]) shuffle([INNER, OUTER, OUTER2]) randRange(-10, 10) SOLVE_FOR[1].evalOf(VALUE) SOLVE_FOR[0].evalOf(INNER_VALUE)
  • FUNCTIONS[0].name(FUNCTIONS[0].variable) = FUNCTIONS[0].text()
  • FUNCTIONS[1].name(FUNCTIONS[1].variable) = FUNCTIONS[1].text()
  • FUNCTIONS[2].name(FUNCTIONS[2].variable) = FUNCTIONS[2].text()

SOLVE_FOR[0].name(SOLVE_FOR[1].name(VALUE)) = {?}

OUTER_VALUE

Als erstes bestimmen wir den Wert der inneren Funktion, SOLVE_FOR[1].name(VALUE). Dann wissen wir welchen Wert wir in die äußere Funktion eingeben müssen.

value

Wir wissen nun, dass SOLVE_FOR[1].name(VALUE) = INNER_VALUE. Dann können wir SOLVE_FOR[0].name(SOLVE_FOR[1].name(VALUE)) auswerten, was demnach dasselbe wie SOLVE_FOR[0].name(INNER_VALUE) ist.

value