Übung: Verkettete Funktionen
shuffle(["f", "g", "h"])
["x", "n", "t"]
new Polynomial( randRange(0, 2), randRangeWeighted(1, 3, 3, 0.2), null, randFromArray(FUNC_VARIABLES), FUNC_NAMES[0] )
new CompositePolynomial( randRange(0, 2), randRangeWeighted(1, 3, 3, 0.2), null, randFromArray(FUNC_VARIABLES), FUNC_NAMES[1], INNER )
shuffle([INNER, OUTER])
shuffle([INNER, OUTER])
randRange(-10, 10)
SOLVE_FOR[1].evalOf(VALUE)
SOLVE_FOR[0].evalOf(INNER_VALUE)
FUNCTIONS[0].name(FUNCTIONS[0].variable) = FUNCTIONS[0].text()
FUNCTIONS[1].name(FUNCTIONS[1].variable) = FUNCTIONS[1].text()
SOLVE_FOR[0].name(SOLVE_FOR[1].name(VALUE)) = {?}
OUTER_VALUE
new CompositePolynomial( randRange(0, 2), randRange(1, 3), null, randFromArray(FUNC_VARIABLES), FUNC_NAMES[2], randFromArray([INNER, OUTER]) )
shuffle([INNER, OUTER, OUTER2])
shuffle([INNER, OUTER, OUTER2])
randRange(-10, 10)
SOLVE_FOR[1].evalOf(VALUE)
SOLVE_FOR[0].evalOf(INNER_VALUE)
FUNCTIONS[0].name(FUNCTIONS[0].variable) = FUNCTIONS[0].text()
FUNCTIONS[1].name(FUNCTIONS[1].variable) = FUNCTIONS[1].text()
FUNCTIONS[2].name(FUNCTIONS[2].variable) = FUNCTIONS[2].text()
SOLVE_FOR[0].name(SOLVE_FOR[1].name(VALUE)) = {?}
OUTER_VALUE
Als erstes bestimmen wir den Wert der inneren Funktion, SOLVE_FOR[1].name(VALUE)
. Dann wissen wir welchen Wert wir in die äußere Funktion eingeben müssen.
value
Wir wissen nun, dass SOLVE_FOR[1].name(VALUE) = INNER_VALUE
.
Dann können wir SOLVE_FOR[0].name(SOLVE_FOR[1].name(VALUE))
auswerten, was demnach dasselbe wie SOLVE_FOR[0].name(INNER_VALUE)
ist.
value