\( \newcommand{\br}[1]{\left( #1\right)} \newcommand{\logpar}[1]{\log\left( #1\right)} \newcommand{\cospar}[1]{\cos\left( #1\right)} \newcommand{\sinpar}[1]{\sin\left( #1\right)} \newcommand{\tanpar}[1]{\tan\left( #1\right)} \newcommand{\arcsinpar}[1]{\sin^{-1}\!\left( #1\right)} \newcommand{\arccospar}[1]{\cos^{-1}\!\left( #1\right)} \newcommand{\arctanpar}[1]{\tan^{-1}\!\left( #1\right)} \newcommand{\asin}[1]{\sin^{-1}\! #1} \newcommand{\acos}[1]{\cos^{-1}\! #1} \newcommand{\atan}[1]{\tan^{-1}\! #1} \newcommand{\asinh}[1]{\sinh^{-1}\! #1} \newcommand{\acosh}[1]{\cosh^{-1}\! #1} \newcommand{\atanh}[1]{\tanh^{-1}\! #1} \newcommand{\logten}[1]{\log_{10}\! #1} \definecolor{explaination}{RGB}{0, 166, 226} \newcommand{\ubrace}[2][u]{ { \color{explaination}{\underbrace{ {\color{black}{#2}} }_{#1}} } } \newcommand{\obrace}[2][u]{ { \color{explaination}{\overbrace{ {\color{black}{#2}} }^{#1}} } } \definecolor{highlight}{RGB}{181, 41, 118} \newcommand{\xplain}[1]{{ \textcolor{explaination} { \footnotesize{ #1 \newline}}}} \newcommand{\hilite}[1]{{ \textcolor{highlight} { { #1 }}}} \definecolor{lightergray}{gray}{.675} \newcommand{\hide}[1]{{ \textcolor{lightergray} { \footnotesize{ #1 \newline}}}} \newcommand{\mth}[1]{ { \textcolor{black} { { \small #1 } } } } \)

Übung: Regel von L’Hôpital

randFromArray([ 0, Infinity ]) { 0: "0", "Infinity": "\\infty" }[ APPROACHES ] "\\frac" + { 0: "{0}{0}", "Infinity": "{\\infty}{\\infty}" }[ APPROACHES ] MatheguruHelper.randRange( 2, 3 ) new MatheguruHelper.Polynomial( DEGREE - 1, DEGREE, MatheguruHelper.randCoefs( DEGREE - 1, DEGREE ), "x" ) new MatheguruHelper.Polynomial( DEGREE - 1, DEGREE, MatheguruHelper.randCoefs( DEGREE - 1, DEGREE ), "x" ) (function() { var steps = [[ NUMERATOR, DENOMINATOR ]]; var n = NUMERATOR, d = DENOMINATOR; while ( d.findMinDegree() !== 0 || ( APPROACHES === 0 ? false : d.findMaxDegree() !== 0 ) ) { n = MatheguruHelper.ddxPolynomial( n ); d = MatheguruHelper.ddxPolynomial( d ); steps.push([ n, d ]); } return steps; })() STEPS[ STEPS.length - 1 ][ 0 ] STEPS[ STEPS.length - 1 ][ 1 ] SLN_NUMERATOR_TEXT.evalOf( 0 ) SLN_DENOMINATOR_TEXT.evalOf( 0 ) reduces( SLN_NUMERATOR, SLN_DENOMINATOR ) || SLN_NUMERATOR < 0 || SLN_DENOMINATOR < 0 || abs( SLN_DENOMINATOR ) === 1

\large\displaystyle \lim_{x \to APPROACHES_TEXT} \frac{NUMERATOR}{DENOMINATOR} = {?}

SLN_NUMERATOR / SLN_DENOMINATOR

Die Regel von L'Hopital sagt, dass weil \displaystyle \lim_{x \to APPROACHES_TEXT} \frac{NUMERATOR}{DENOMINATOR} = INDETERMINATE_FORM,
wenn \displaystyle \lim_{x \to APPROACHES_TEXT} \frac{\frac{\mathrm{d}}{\mathrm{d}x} (NUMERATOR)}{\frac{\mathrm{d}}{\mathrm{d}x} (DENOMINATOR)} existiert, wird dessen Grenzwert uns den eigentlich gesuchten Grenzwert geben.

Wir müssen die Regel von L'Hopital so lange anwenden, bis wir keinen unbestimmten Ausdruck mehr erhalten:

Da der Grenzwert immer noch ein unbestimmter Ausdruck, INDETERMINATE_FORM, ist, müssen wir die Regel von L'Hopital erneut anwenden:

\displaystyle\frac{\frac{\mathrm{d}}{\mathrm{d}x} (STEP[0])}{\frac{\mathrm{d}}{\mathrm{d}x} (STEP[1])} = \frac{STEPS[N+1][0]}{STEPS[N+1][1]}

Den Grenzwert berechnen: \displaystyle \lim_{x \to APPROACHES_TEXT} \frac{SLN_NUMERATOR_TEXT.text()}{SLN_DENOMINATOR_TEXT.text()} = \frac{SLN_NUMERATOR_TEXT.text().replace("x", "(0)")}{SLN_DENOMINATOR_TEXT.text().replace("x", "(0)")} = \frac{SLN_NUMERATOR}{SLN_DENOMINATOR} = fractionReduce( SLN_NUMERATOR, SLN_DENOMINATOR )

Daher ist  \displaystyle \lim_{x \to APPROACHES_TEXT} \frac{NUMERATOR}{DENOMINATOR} = fractionReduce( SLN_NUMERATOR, SLN_DENOMINATOR )