\( \newcommand{\br}[1]{\left( #1\right)} \newcommand{\logpar}[1]{\log\left( #1\right)} \newcommand{\cospar}[1]{\cos\left( #1\right)} \newcommand{\sinpar}[1]{\sin\left( #1\right)} \newcommand{\tanpar}[1]{\tan\left( #1\right)} \newcommand{\arcsinpar}[1]{\sin^{-1}\!\left( #1\right)} \newcommand{\arccospar}[1]{\cos^{-1}\!\left( #1\right)} \newcommand{\arctanpar}[1]{\tan^{-1}\!\left( #1\right)} \newcommand{\asin}[1]{\sin^{-1}\! #1} \newcommand{\acos}[1]{\cos^{-1}\! #1} \newcommand{\atan}[1]{\tan^{-1}\! #1} \newcommand{\asinh}[1]{\sinh^{-1}\! #1} \newcommand{\acosh}[1]{\cosh^{-1}\! #1} \newcommand{\atanh}[1]{\tanh^{-1}\! #1} \newcommand{\logten}[1]{\log_{10}\! #1} \definecolor{explaination}{RGB}{0, 166, 226} \newcommand{\ubrace}[2][u]{ { \color{explaination}{\underbrace{ {\color{black}{#2}} }_{#1}} } } \newcommand{\obrace}[2][u]{ { \color{explaination}{\overbrace{ {\color{black}{#2}} }^{#1}} } } \definecolor{highlight}{RGB}{181, 41, 118} \newcommand{\xplain}[1]{{ \textcolor{explaination} { \footnotesize{ #1 \newline}}}} \newcommand{\hilite}[1]{{ \textcolor{highlight} { { #1 }}}} \definecolor{lightergray}{gray}{.675} \newcommand{\hide}[1]{{ \textcolor{lightergray} { \footnotesize{ #1 \newline}}}} \newcommand{\mth}[1]{ { \textcolor{black} { { \small #1 } } } } \)

Übung: Quotientenregel

generateSpecialFunction("x") generateSpecialFunction("x") FUNCN.fText FUNCN.ddxFText FUNCD.fText FUNCD.ddxFText funcNotation("x") function(a, b, c, d, e, min) { var term1 = "\\left(" + a + "\\right)" + (a === b ? "^2" : "\\left(" + b + "\\right)"); var term2 = "\\left(" + c + "\\right)" + (c === d ? "^2" : "\\left(" + d + "\\right)"); return "\\dfrac{" + term1 + min + term2 + "}" + "{\\left(" + e + "\\right)^2}"; }

Bestimme \displaystyle \frac{\mathrm{d}}{\mathrm{d}x}\biggl( \frac{FUNCN.fText}{FUNCD.fText} \biggr).

ANSWER( N_DF, D_F, D_DF, N_F, D_F, "-" )

  • ANSWER( N_DF, D_DF, D_F, N_F, D_F, "-" )
  • ANSWER( N_DF, D_F, D_DF, N_F, N_F, "-" )
  • ANSWER( N_DF, D_DF, D_F, N_F, N_F, "-" )
  • ANSWER( N_DF, D_F, D_DF, N_F, D_F, "+" )
  • ANSWER( N_DF, D_DF, D_F, N_F, D_F, "+" )
  • ANSWER( N_DF, D_F, D_DF, N_F, N_F, "+" )
  • ANSWER( N_DF, D_DF, D_F, N_F, N_F, "+" )

Von der Kettenregel und der Produktregel wissen wir, dass \displaystyle \frac{\mathrm{d}}{\mathrm{d}x\strut}\frac{f(x)}{g(x)} = \frac{f'(x)g(x) - g'(x)f(x)}{g(x){}^2}.

In diesem Fall ist

\qquad f(x) = FUNCN.fText,

\qquad g(x) = FUNCD.fText.

Beide Funktionen ableiten:

\qquad f'(x) = FUNCN.ddxFText,

\qquad g'(x) = FUNCD.ddxFText.

Daher ist die Antwort

\qquad \dfrac{{(FUNCN.ddxFText)(FUNCD.fText) - (FUNCD.ddxFText)(FUNCN.fText)}}{(FUNCD.fText)^2}.