\( \newcommand{\br}[1]{\left( #1\right)} \newcommand{\logpar}[1]{\log\left( #1\right)} \newcommand{\cospar}[1]{\cos\left( #1\right)} \newcommand{\sinpar}[1]{\sin\left( #1\right)} \newcommand{\tanpar}[1]{\tan\left( #1\right)} \newcommand{\arcsinpar}[1]{\sin^{-1}\!\left( #1\right)} \newcommand{\arccospar}[1]{\cos^{-1}\!\left( #1\right)} \newcommand{\arctanpar}[1]{\tan^{-1}\!\left( #1\right)} \newcommand{\asin}[1]{\sin^{-1}\! #1} \newcommand{\acos}[1]{\cos^{-1}\! #1} \newcommand{\atan}[1]{\tan^{-1}\! #1} \newcommand{\asinh}[1]{\sinh^{-1}\! #1} \newcommand{\acosh}[1]{\cosh^{-1}\! #1} \newcommand{\atanh}[1]{\tanh^{-1}\! #1} \newcommand{\logten}[1]{\log_{10}\! #1} \definecolor{explaination}{RGB}{0, 166, 226} \newcommand{\ubrace}[2][u]{ { \color{explaination}{\underbrace{ {\color{black}{#2}} }_{#1}} } } \newcommand{\obrace}[2][u]{ { \color{explaination}{\overbrace{ {\color{black}{#2}} }^{#1}} } } \definecolor{highlight}{RGB}{181, 41, 118} \newcommand{\xplain}[1]{{ \textcolor{explaination} { \footnotesize{ #1 \newline}}}} \newcommand{\hilite}[1]{{ \textcolor{highlight} { { #1 }}}} \definecolor{lightergray}{gray}{.675} \newcommand{\hide}[1]{{ \textcolor{lightergray} { \footnotesize{ #1 \newline}}}} \newcommand{\mth}[1]{ { \textcolor{black} { { \small #1 } } } } \)

Übung: Logarithmen umschreiben

randRange(2,5) randRange(2,5) A*B

Bringe den folgenden Ausdruck in die Form log(c).

\Large\log(A) + \log(B)

C

Benutze folgendes Logarithmusgesetz: \log(a) + \log(b) = \log(a \cdot b).

\log(A) + \log(B) = \log(A \cdot B)

= \log(C)

Bringe den folgenden Ausdruck in die Form log(c).

\Large\log(C) - \log(A)

B

Benutze folgendes Logarithmusgesetz: \log(a) - \log(b) = \log(\frac{a}{b}).

\log(C) - \log(A) = \log(\frac{C}{A})

= \log( B )

Bringe den folgenden Ausdruck in die Form log(c).

\Large A\log(B)

pow( B, A )

Benutze folgendes Logarithmusgesetz: n \cdot \log(a) = \log(a^{n}).

A\log(B) = \log(B^{A})

= \log(pow( B, A ))