\( \newcommand{\br}[1]{\left( #1\right)} \newcommand{\logpar}[1]{\log\left( #1\right)} \newcommand{\cospar}[1]{\cos\left( #1\right)} \newcommand{\sinpar}[1]{\sin\left( #1\right)} \newcommand{\tanpar}[1]{\tan\left( #1\right)} \newcommand{\arcsinpar}[1]{\sin^{-1}\!\left( #1\right)} \newcommand{\arccospar}[1]{\cos^{-1}\!\left( #1\right)} \newcommand{\arctanpar}[1]{\tan^{-1}\!\left( #1\right)} \newcommand{\asin}[1]{\sin^{-1}\! #1} \newcommand{\acos}[1]{\cos^{-1}\! #1} \newcommand{\atan}[1]{\tan^{-1}\! #1} \newcommand{\asinh}[1]{\sinh^{-1}\! #1} \newcommand{\acosh}[1]{\cosh^{-1}\! #1} \newcommand{\atanh}[1]{\tanh^{-1}\! #1} \newcommand{\logten}[1]{\log_{10}\! #1} \definecolor{explaination}{RGB}{0, 166, 226} \newcommand{\ubrace}[2][u]{ { \color{explaination}{\underbrace{ {\color{black}{#2}} }_{#1}} } } \newcommand{\obrace}[2][u]{ { \color{explaination}{\overbrace{ {\color{black}{#2}} }^{#1}} } } \definecolor{highlight}{RGB}{181, 41, 118} \newcommand{\xplain}[1]{{ \textcolor{explaination} { \footnotesize{ #1 \newline}}}} \newcommand{\hilite}[1]{{ \textcolor{highlight} { { #1 }}}} \definecolor{lightergray}{gray}{.675} \newcommand{\hide}[1]{{ \textcolor{lightergray} { \footnotesize{ #1 \newline}}}} \newcommand{\mth}[1]{ { \textcolor{black} { { \small #1 } } } } \)

Übung: Grenzwerte #1

randRangeNonZero(-3, 3) floor(sqrt(abs(10 / q_lcoef))) randRangeNonZero(-1 * edge, edge) q_lcoef + 'x^2' cleanMath('(x + ' + l_cons + ')') function(x) { return truncate_to_max(q_lcoef * Math.pow(x, 2), 4); } -1 * l_cons curFunc(a) limtoa limtoa

\displaystyle\large\lim_{x\toa} \dfrac{quadraticLINE}{LINE} = {?}

graphInit({ range: 10, scale: 20, tickStep: 1, labelStep: 1, unityLabels: false, labelFormat: function( s ) { return "\\small{" + s + "}"; }, axisArrows: "<->" }); style({ stroke: "#00A6E2" }, function() { plot( function(x) { return q_lcoef * x * x; }, [-10, 10] ); circle( [a, limtoa], 4 / 20, { fill: "white" } ) });

limtoa

  • 0
  • randRangeNonZero(-3, 3)
  • randRangeNonZero(-3, 3)
  • q_lcoef
  • l_cons
  • curFunc(0)
  • Existiert nicht.
randRangeNonZero(-5, 5) randRangeNonZero(-7, 7) function(x) { return x + abs_cons > 0 ? abs_coef : abs_coef * -1; } abs_cons * -1 curFunc(a) abs_coef * -1 abs_coef

\displaystyle \large \lim_{x\toa} \dfrac{abs_coef|x + abs_cons|}{x + abs_cons} = {?}

graphInit({ range: 10, scale: 20, tickStep: 1, labelStep: 1, unityLabels: false, labelFormat: function( s ) { return "\\small{" + s + "}"; }, axisArrows: "<->" }); style({ stroke: "#00A6E2" }, function() { line( [-11, abs_coef * -1], [-abs_cons, abs_coef * -1] ); line( [-abs_cons, abs_coef], [11, abs_coef] ); circle( [-abs_cons, -abs_coef], 4 / 20, { fill: "white" } ) circle( [-abs_cons, abs_coef], 4 / 20, { fill: "white" } ) });

Existiert nicht.

  • 0
  • a
  • abs_cons
  • abs_coef
  • abs_coef * -1
  • abs_coef * abs_coef
  • abs_coef * abs_coef * -1
  • randRangeNonZero(-3, 3)
  • randRangeNonZero(-3, 3)

Der linksseitige Grenzwert entspricht nicht dem rechtsseitigen Grenzwert. Daher hat f(x) keinen Grenzwert für x \to a.

randRangeNonZero(-3, 3) randRangeNonZero(-4, 4) randRangeNonZero(-7, 7) expr(["+", ["*", l_coef, "x"], l_cons]) function(x) { return l_coef * x + l_cons; } ceil((-10 - l_cons)/l_coef) floor((10 - l_cons)/l_coef) l_coef > 0 ? randRangeNonZero(a0, a1) : randRangeNonZero(a1, a0) curFunc(a) limtoa limtoa $._("wenn") $._("sonst")

Für \displaystyle\large f(x) = \begin{cases} d_cons & \text{IF } x = a \\ d_line & \text{OTHERWISE} \end{cases}, bestimme \displaystyle\large \lim_{x \to a} f(x).

graphInit({ range: 10, scale: 20, tickStep: 1, labelStep: 1, unityLabels: false, labelFormat: function( s ) { return "\\small{" + s + "}"; }, axisArrows: "<->" }); style({ stroke: "#00A6E2" }, function() { plot( function(x) { return l_coef * x + l_cons; }, [-10, 10] ); circle( [a, limtoa], 4 / 20, { fill: "white" } ) circle( [a, d_cons], 4 / 20, { fill: "#00A6E2", stroke: "none" } ) });

limtoa

  • 0
  • a
  • d_cons
  • l_coef
  • fractionReduce(l_cons * -1, l_coef)
  • randRangeNonZero(-3, 3)
  • randRangeNonZero(-3, 3)
  • Existiert nicht.
randRangeNonZero(-3, 3) randRangeNonZero(-3, 3) floor(sqrt(abs((10 - q_cons) / q_lcoef))) randRangeNonZero(-1 * edge, edge) function(x) { return q_lcoef * Math.pow(x, 2) + q_cons; } curFunc(a) limtoa limtoa

\displaystyle\large \lim_{x\toa} expr(["+", ["*", q_lcoef, ["^", "x", 2]], q_cons]) = {?}

graphInit({ range: 10, scale: 20, tickStep: 1, labelStep: 1, unityLabels: false, labelFormat: function( s ) { return "\\small{" + s + "}"; }, axisArrows: "<->" }); style({ stroke: "#00A6E2" }, function() { plot( function(x) { return q_lcoef * x * x + q_cons; }, [-10, 10] ); });

limtoa

  • 0
  • curFunc(0)
  • randRangeNonZero(-3, 3)
  • q_cons
  • q_cons * -1
  • Existiert nicht.

Was passiert, wenn wir uns x = a von links annähern?

line( [a - 2, 0], [a, 0], { stroke: "#EF2978", arrows: "->" });
xlocaleToFixed(a - 0.1, -1)localeToFixed(a - 0.01, -1)localeToFixed(a - 0.001, -1)
f(x)localeToFixed(curFunc(a - 0.1), 4)localeToFixed(curFunc(a - 0.01), 4)localeToFixed(curFunc(a - 0.001), 4)
Es sieht so aus, dass je weiter sich f(x) a von links aus annähert, desto mehr nähert es sich l_limtoa.

Wenn wir uns von rechts aus x = a annähern, bekommen wir:

xlocaleToFixed(a + 0.1, -1)localeToFixed(a + 0.01, -1)localeToFixed(a + 0.001, -1)
f(x)localeToFixed(curFunc(a + 0.1), 4)localeToFixed(curFunc(a + 0.01), 4)localeToFixed(curFunc(a + 0.001), 4)

Es sieht so aus, dass je weiter sich f(x) von rechts aus annähert, desto mehr nähert es sich r_limtoa.

line( [a + 2, 0], [a, 0], { stroke: "#EF2978", arrows: "->" });

Daher ist der Grenzwert limtoa.