\( \newcommand{\br}[1]{\left( #1\right)} \newcommand{\logpar}[1]{\log\left( #1\right)} \newcommand{\cospar}[1]{\cos\left( #1\right)} \newcommand{\sinpar}[1]{\sin\left( #1\right)} \newcommand{\tanpar}[1]{\tan\left( #1\right)} \newcommand{\arcsinpar}[1]{\sin^{-1}\!\left( #1\right)} \newcommand{\arccospar}[1]{\cos^{-1}\!\left( #1\right)} \newcommand{\arctanpar}[1]{\tan^{-1}\!\left( #1\right)} \newcommand{\asin}[1]{\sin^{-1}\! #1} \newcommand{\acos}[1]{\cos^{-1}\! #1} \newcommand{\atan}[1]{\tan^{-1}\! #1} \newcommand{\asinh}[1]{\sinh^{-1}\! #1} \newcommand{\acosh}[1]{\cosh^{-1}\! #1} \newcommand{\atanh}[1]{\tanh^{-1}\! #1} \newcommand{\logten}[1]{\log_{10}\! #1} \definecolor{explaination}{RGB}{0, 166, 226} \newcommand{\ubrace}[2][u]{ { \color{explaination}{\underbrace{ {\color{black}{#2}} }_{#1}} } } \newcommand{\obrace}[2][u]{ { \color{explaination}{\overbrace{ {\color{black}{#2}} }^{#1}} } } \definecolor{highlight}{RGB}{181, 41, 118} \newcommand{\xplain}[1]{{ \textcolor{explaination} { \footnotesize{ #1 \newline}}}} \newcommand{\hilite}[1]{{ \textcolor{highlight} { { #1 }}}} \definecolor{lightergray}{gray}{.675} \newcommand{\hide}[1]{{ \textcolor{lightergray} { \footnotesize{ #1 \newline}}}} \newcommand{\mth}[1]{ { \textcolor{black} { { \small #1 } } } } \)

Übung: Brüche vereinfachen

randRange( 3, 15 ) randRange(2, 10) * FACTOR randRange(2, 10) * FACTOR getGCD( NUM, DENOM ) getPrimeFactorization( GCD ) (function(){ var factorValue = 1; var factorDisplay = ""; var hint = "\\dfrac{" + NUM + "}{" + DENOM + "}"; $.each( GCD_FACTORS, function( index, value) { factorValue *= value; var dot = index === 0 ? "" : "\\cdot "; factorDisplay += dot + value; hint += "= \\dfrac{" + factorDisplay + "\\cdot" + NUM / factorValue + "}{" + factorDisplay + "\\cdot" + DENOM / factorValue + "}"; }); hint += "= \\dfrac{" + NUM / GCD + "}{" + DENOM / GCD + "}"; return hint; })()

Kürze den folgenden Bruch.

\large\dfrac{NUM}{DENOM}

NUM / DENOM

Diese Aufgabe kann auf verschiedene Arten gelöst werden.

Was ist der größte gemeinsame Teiler (ggT) von NUM und DENOM?

NUM = getPrimeFactorization( NUM ).join( "\\cdot" )
DENOM = getPrimeFactorization( DENOM ).join( "\\cdot" )

\mbox{ggT}(NUM, DENOM) = GCD_FACTORS.join( "\\cdot" ) = GCD

\dfrac{NUM}{DENOM} = \dfrac{NUM / GCD \cdot GCD}{ DENOM / GCD\cdot GCD}

\hphantom{\dfrac{NUM}{DENOM}} = \dfrac{NUM / GCD}{DENOM / GCD} \cdot \dfrac{GCD}{GCD}

\hphantom{\dfrac{NUM}{DENOM}} = \dfrac{NUM / GCD}{DENOM / GCD} \cdot 1

\hphantom{\dfrac{NUM}{DENOM}} = \dfrac{NUM / GCD}{DENOM / GCD}

Das Problem kann gelöst werden, indem Zähler und Nenner wiederholt in gemeinsame Faktoren zerlegt wird.

Beispielsweise:

HINT