\( \newcommand{\br}[1]{\left( #1\right)} \newcommand{\logpar}[1]{\log\left( #1\right)} \newcommand{\cospar}[1]{\cos\left( #1\right)} \newcommand{\sinpar}[1]{\sin\left( #1\right)} \newcommand{\tanpar}[1]{\tan\left( #1\right)} \newcommand{\arcsinpar}[1]{\sin^{-1}\!\left( #1\right)} \newcommand{\arccospar}[1]{\cos^{-1}\!\left( #1\right)} \newcommand{\arctanpar}[1]{\tan^{-1}\!\left( #1\right)} \newcommand{\asin}[1]{\sin^{-1}\! #1} \newcommand{\acos}[1]{\cos^{-1}\! #1} \newcommand{\atan}[1]{\tan^{-1}\! #1} \newcommand{\asinh}[1]{\sinh^{-1}\! #1} \newcommand{\acosh}[1]{\cosh^{-1}\! #1} \newcommand{\atanh}[1]{\tanh^{-1}\! #1} \newcommand{\logten}[1]{\log_{10}\! #1} \definecolor{explaination}{RGB}{0, 166, 226} \newcommand{\ubrace}[2][u]{ { \color{explaination}{\underbrace{ {\color{black}{#2}} }_{#1}} } } \newcommand{\obrace}[2][u]{ { \color{explaination}{\overbrace{ {\color{black}{#2}} }^{#1}} } } \definecolor{highlight}{RGB}{181, 41, 118} \newcommand{\xplain}[1]{{ \textcolor{explaination} { \footnotesize{ #1 \newline}}}} \newcommand{\hilite}[1]{{ \textcolor{highlight} { { #1 }}}} \definecolor{lightergray}{gray}{.675} \newcommand{\hide}[1]{{ \textcolor{lightergray} { \footnotesize{ #1 \newline}}}} \newcommand{\mth}[1]{ { \textcolor{black} { { \small #1 } } } } \)

Übung: Brüche als Exponenten #2

twoBasesOneRoot() random() < 0.75 VALS.root isOdd( EXP_D ) && ( random() < 0.75 ) VALS.base_1 VALS.base_2 EXP_NEG ? BASE_D : BASE_N EXP_NEG ? BASE_N : BASE_D BASE_NEG round( pow( EXP_NEG ? BASE_D : BASE_N, 1 / EXP_D_ORIG ) ) round( pow( EXP_NEG ? BASE_N : BASE_D, 1 / EXP_D_ORIG ) ) function() { var max_exp = min( maxReasonableExp( ROOT_N_ORIG ), maxReasonableExp( ROOT_D_ORIG ) ); var exp_n; while ( exp_n === undefined || exp_n % EXP_D_ORIG === 0 ) { exp_n = randRange( 2, max_exp ); } return exp_n; }() getGCD( EXP_N_ORIG, EXP_D_ORIG ) EXP_N_ORIG / GCD EXP_D_ORIG / GCD round( pow( EXP_NEG ? BASE_D : BASE_N, 1 / EXP_D ) ) round( pow( EXP_NEG ? BASE_N : BASE_D, 1 / EXP_D ) ) ROOT_NEG && isOdd( EXP_N ) round( pow( ROOT_N, EXP_N ) ) round( pow( ROOT_D, EXP_N ) )

\Large fracParens( BASE_N, BASE_D )^{fracSmall( ( EXP_NEG ? -1 : 1 ) * EXP_N, EXP_D )}

SOL_N / SOL_D

= fracParens( BASEF_N, BASEF_D )^{fracSmall( EXP_N, EXP_D )}

= \left(fracParens( BASEF_N, BASEF_D )^{fracSmall( 1, EXP_D )}\right)^{EXP_N}

Um fracParens( BASEF_N, BASEF_D )^{fracSmall( 1, EXP_D )} zu vereinfachen, müssen wir herausfinden, welche Zahl in die Lücke kommt:
\left(? \right)^{abs( EXP_D )}=frac( BASEF_N, BASEF_D )

Um fracParens( BASEF_N, BASEF_D )^{fracSmall( 1, EXP_D )} zu vereinfachen, müssen wir herausfinden, welche Zahl in die Lücke kommt:
\left(\pink{frac( ROOT_N, ROOT_D )}\right)^{abs( EXP_D )}=frac( BASEF_N, BASEF_D )

daher ist \quadfracParens( BASEF_N, BASEF_D )^{fracSmall( 1, EXP_D )}=frac( ROOT_N, ROOT_D )

Somit ist fracParens( BASEF_N, BASEF_D )^{fracSmall( EXP_N, EXP_D )}=\left(fracParens( BASEF_N, BASEF_D )^{fracSmall( 1, EXP_D )}\right)^{EXP_N}=fracParens( ROOT_N, ROOT_D )^{EXP_N}

= fraction( ROOT_N, ROOT_D, true, true, false, true )^{EXP_N}

= v