Übung: Brüche addieren und subtrahieren
\large fraction( N1, D1 ) + fraction( N2, D2 ) = {?}
Als Erstes müssen wir den kleinsten gemeinsamen Nenner finden. Der kleinste gemeinsame Nenner von D1
und D2
ist das kleinste gemeinsame Vielfache (\mathrm{kgV}
) der Nenner dieser Brüche.
\mathrm{kgV}(D1, D2) = LCM
Dann müssen wir beide Brüche so zu erweitern, dass ihr Nenner LCM
ist.
\begin{align*}fraction( N1, D1 )\cdot fraction( F1, F1 ) &= fraction( N1 * F1, LCM )\\
fraction( N2, D2 )\cdot fraction( F2, F2 ) &= fraction( N2 * F2, LCM )\end{align*}
Damit lautet die neue Aufgabe:
fraction( N1 * F1, LCM ) + fraction( N2 * F2, LCM ) = {?}
Jetzt müssen wir nur noch die Zähler addierensubtrahieren und erhalten:
fraction( F1 * N1 + F2 * N2, LCM)
Nachdem wir alles vereinfacht haben, erhalten wir:
fractionReduce( F1 * N1 + F2 * N2, LCM )