Übung: Ableiten von Polynomen
Was ist die Steigung der Tangente von \large f(x) = expr(["+", ["*", A, ["^", "x", 2]], ["*", B, "x"], C])
in \large x = X
?
Die Steigung der Tangente ist: \large\displaystyle \lim_{H \to 0} \frac{f(x + H) - f(x)}{H}
.
\large\qquad = \displaystyle \lim_{H \to 0} \frac{(expr(
["+", ["*", A, ["^", ["+", "x", H], 2]],
["*", B, ["+", "x", H]],
C]
)) - (expr(
["+", ["*", A, ["^", "x", 2]],
["*", B, "x"],
C]
))}{H}
\large\qquad = \displaystyle \lim_{H \to 0} \frac{(expr(
["+", ["*", A, ["+", ["^", "x", 2],
"2x " + H,
["^", H, 2]]],
["*", B, ["+", "x", H]],
C]
)) - (expr(
["+", ["*", A, ["^", "x", 2]],
["*", B, "x"],
C]
))}{H}
\large\qquad = \displaystyle \lim_{H \to 0} \frac{expr(
["+", ["*", A, ["^", "x", 2]],
["*", 2 * A, "x " + H],
["*", A, ["^", H, 2]],
["*", B, "x"],
["*", B, H],
C,
["*", -A, ["^", "x", 2]],
["*", -B, "x"],
-C]
)}{H}
\large\qquad = \displaystyle \lim_{H \to 0} \frac{expr(
["+", ["*", 2 * A, "x " + H],
["*", A, ["^", H, 2]],
["*", B, H]]
)}{H}
\large\qquad = \displaystyle \lim_{H \to 0} expr(
["+", ["*", 2 * A, "x"],
["*", A, H],
B]
)
\large\qquad = \displaystyle expr(
["+", ["*", 2 * A, "x"],
B]
)
\large\qquad = \displaystyle expr(
["+", ["*", 2 * A, X],
B]
)
\large\qquad = 2 * A * X + B