\( \newcommand{\br}[1]{\left( #1\right)} \newcommand{\logpar}[1]{\log\left( #1\right)} \newcommand{\cospar}[1]{\cos\left( #1\right)} \newcommand{\sinpar}[1]{\sin\left( #1\right)} \newcommand{\tanpar}[1]{\tan\left( #1\right)} \newcommand{\arcsinpar}[1]{\sin^{-1}\!\left( #1\right)} \newcommand{\arccospar}[1]{\cos^{-1}\!\left( #1\right)} \newcommand{\arctanpar}[1]{\tan^{-1}\!\left( #1\right)} \newcommand{\asin}[1]{\sin^{-1}\! #1} \newcommand{\acos}[1]{\cos^{-1}\! #1} \newcommand{\atan}[1]{\tan^{-1}\! #1} \newcommand{\asinh}[1]{\sinh^{-1}\! #1} \newcommand{\acosh}[1]{\cosh^{-1}\! #1} \newcommand{\atanh}[1]{\tanh^{-1}\! #1} \newcommand{\logten}[1]{\log_{10}\! #1} \definecolor{explaination}{RGB}{0, 166, 226} \newcommand{\ubrace}[2][u]{ { \color{explaination}{\underbrace{ {\color{black}{#2}} }_{#1}} } } \newcommand{\obrace}[2][u]{ { \color{explaination}{\overbrace{ {\color{black}{#2}} }^{#1}} } } \definecolor{highlight}{RGB}{181, 41, 118} \newcommand{\xplain}[1]{{ \textcolor{explaination} { \footnotesize{ #1 \newline}}}} \newcommand{\hilite}[1]{{ \textcolor{highlight} { { #1 }}}} \definecolor{lightergray}{gray}{.675} \newcommand{\hide}[1]{{ \textcolor{lightergray} { \footnotesize{ #1 \newline}}}} \newcommand{\mth}[1]{ { \textcolor{black} { { \small #1 } } } } \)

Übung: Ableiten von Polynomen

randRangeNonZero( -2, 2 ) randRangeNonZero( -4, 4 ) ( A > 0 ? -1 : 1 ) * randRange( 3, 8 ) randFromArray([ "\\Delta x", "h" ])
randRange( -6, 6 )

Was ist die Steigung der Tangente von \large f(x) = expr(["+", ["*", A, ["^", "x", 2]], ["*", B, "x"], C]) in \large x = X?

init({ range: [ [-10, 10], [-10, 10] ], scale: [20, 20] }); grid( [-10, 10], [-10, 10], { stroke: "#e5e5e5" }); style({ stroke: "#888", strokeWidth: 2, arrows: "->" }, function() { line( [-10, 0], [10, 0] ); line( [0, -10], [0, 10] ); }); plot( function( x ) { return ( A * x + B ) * x + C; }, [-10, 10], { stroke: "#09A8E2" }); circle( [ X, ( A * X + B ) * X + C ], 3 / 20, { fill: "black", stroke: "none" } );
2 * A * X + B
plot( function( x ) { return ( 2 * A * X + B ) * ( x - X ) + ( A * X + B ) * X + C; }, [-10, 10], { stroke: "black", strokeWidth: 1 });

Die Steigung der Tangente ist: \large\displaystyle \lim_{H \to 0} \frac{f(x + H) - f(x)}{H}.

\large\qquad = \displaystyle \lim_{H \to 0} \frac{(expr( ["+", ["*", A, ["^", ["+", "x", H], 2]], ["*", B, ["+", "x", H]], C] )) - (expr( ["+", ["*", A, ["^", "x", 2]], ["*", B, "x"], C] ))}{H}

\large\qquad = \displaystyle \lim_{H \to 0} \frac{(expr( ["+", ["*", A, ["+", ["^", "x", 2], "2x " + H, ["^", H, 2]]], ["*", B, ["+", "x", H]], C] )) - (expr( ["+", ["*", A, ["^", "x", 2]], ["*", B, "x"], C] ))}{H}

\large\qquad = \displaystyle \lim_{H \to 0} \frac{expr( ["+", ["*", A, ["^", "x", 2]], ["*", 2 * A, "x " + H], ["*", A, ["^", H, 2]], ["*", B, "x"], ["*", B, H], C, ["*", -A, ["^", "x", 2]], ["*", -B, "x"], -C] )}{H}

\large\qquad = \displaystyle \lim_{H \to 0} \frac{expr( ["+", ["*", 2 * A, "x " + H], ["*", A, ["^", H, 2]], ["*", B, H]] )}{H}

\large\qquad = \displaystyle \lim_{H \to 0} expr( ["+", ["*", 2 * A, "x"], ["*", A, H], B] )

\large\qquad = \displaystyle expr( ["+", ["*", 2 * A, "x"], B] )

\large\qquad = \displaystyle expr( ["+", ["*", 2 * A, X], B] )

\large\qquad = 2 * A * X + B