\( \newcommand{\br}[1]{\left( #1\right)} \newcommand{\logpar}[1]{\log\left( #1\right)} \newcommand{\cospar}[1]{\cos\left( #1\right)} \newcommand{\sinpar}[1]{\sin\left( #1\right)} \newcommand{\tanpar}[1]{\tan\left( #1\right)} \newcommand{\arcsinpar}[1]{\sin^{-1}\!\left( #1\right)} \newcommand{\arccospar}[1]{\cos^{-1}\!\left( #1\right)} \newcommand{\arctanpar}[1]{\tan^{-1}\!\left( #1\right)} \newcommand{\asin}[1]{\sin^{-1}\! #1} \newcommand{\acos}[1]{\cos^{-1}\! #1} \newcommand{\atan}[1]{\tan^{-1}\! #1} \newcommand{\asinh}[1]{\sinh^{-1}\! #1} \newcommand{\acosh}[1]{\cosh^{-1}\! #1} \newcommand{\atanh}[1]{\tanh^{-1}\! #1} \newcommand{\logten}[1]{\log_{10}\! #1} \definecolor{explaination}{RGB}{0, 166, 226} \newcommand{\ubrace}[2][u]{ { \color{explaination}{\underbrace{ {\color{black}{#2}} }_{#1}} } } \newcommand{\obrace}[2][u]{ { \color{explaination}{\overbrace{ {\color{black}{#2}} }^{#1}} } } \definecolor{highlight}{RGB}{181, 41, 118} \newcommand{\xplain}[1]{{ \textcolor{explaination} { \footnotesize{ #1 \newline}}}} \newcommand{\hilite}[1]{{ \textcolor{highlight} { { #1 }}}} \definecolor{lightergray}{gray}{.675} \newcommand{\hide}[1]{{ \textcolor{lightergray} { \footnotesize{ #1 \newline}}}} \newcommand{\mth}[1]{ { \textcolor{black} { { \small #1 } } } } \)

Übung: abc-Formel (Mitternachtsformel)

randRangeNonZero(-10, 10) randRangeNonZero(-10, 10) randRangeNonZero(-10, 10) splitRadical(B*B - 4*A*C)[0] splitRadical(B*B - 4*A*C)[1] new Polynomial( 0, 2, [C, B, A], "x" ) F.text() splitRadical(B*B - 4*A*C) getGCD( B, 2 * A, Math.sqrt( DISC_FACTOR[0] ) ) (function() { var wrongs = []; for ( var i = 0; i < 5; i++ ) { var bad_a = randRangeNonZero(-10, 10); var bad_b = randRangeNonZero(-10, 10); var bad_c = randRangeNonZero(-10, 10); var good_gcd = getGCD( A, B, C ); var bad_gcd = getGCD( bad_a, bad_b, bad_c ); while (( abs(A*bad_gcd) === abs(bad_a*good_gcd) && abs(B*bad_gcd) === abs(bad_b*good_gcd) && abs(C*bad_gcd) === abs(bad_c*good_gcd) ) || (( (bad_b * bad_b) - (4 * bad_a * bad_c) ) < 0)) { bad_a = randRangeNonZero(-10, 10); bad_b = randRangeNonZero(-10, 10); bad_c = randRangeNonZero(-10, 10); good_gcd = getGCD( A, B, C ); bad_gcd = getGCD( bad_a, bad_b, bad_c ); } wrongs.push(quadraticRoots(bad_a, bad_b, bad_c)); } return wrongs; })()

Sei f(x) = F_TEXT.

Was sind die Nullstellen von f(x)?

quadraticRoots(A, B, C)

  • WRONGS[0]
  • WRONGS[1]
  • WRONGS[2]
  • WRONGS[3]
  • WRONGS[4]

Um die Nullstellen der Funktion zu finden, müssen wir die Funktion null setzen: f(x) = 0:

F_TEXT = 0

Mit der abc-Formel (Mitternachtsformel) können wir die Nullstellen von ax^2 + bx + c = 0 bestimmen:

x = \dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}

a = A,   b = B,   c = C

x = \dfrac{-B \pm \sqrt{expr(["^", B, 2]) - 4 \cdot A \cdot C}}{2 \cdot A}

x = \dfrac{-1*B \pm \sqrt{B*B - 4*A*C}}{2*A}

x = \dfrac{-1*B \pm formattedSquareRootOf(B*B-4*A*C)}{2*A}

quadraticRoots(A, B, C)