Übung: abc-Formel (Mitternachtsformel)
randRangeNonZero(-10, 10)
randRangeNonZero(-10, 10)
randRangeNonZero(-10, 10)
splitRadical(B*B - 4*A*C)[0]
splitRadical(B*B - 4*A*C)[1]
new Polynomial( 0, 2, [C, B, A], "x" )
F.text()
splitRadical(B*B - 4*A*C)
getGCD( B, 2 * A, Math.sqrt( DISC_FACTOR[0] ) )
(function() {
var wrongs = [];
for ( var i = 0; i < 5; i++ ) {
var bad_a = randRangeNonZero(-10, 10);
var bad_b = randRangeNonZero(-10, 10);
var bad_c = randRangeNonZero(-10, 10);
var good_gcd = getGCD( A, B, C );
var bad_gcd = getGCD( bad_a, bad_b, bad_c );
while (( abs(A*bad_gcd) === abs(bad_a*good_gcd) &&
abs(B*bad_gcd) === abs(bad_b*good_gcd) &&
abs(C*bad_gcd) === abs(bad_c*good_gcd) ) ||
(( (bad_b * bad_b) - (4 * bad_a * bad_c) ) < 0))
{
bad_a = randRangeNonZero(-10, 10);
bad_b = randRangeNonZero(-10, 10);
bad_c = randRangeNonZero(-10, 10);
good_gcd = getGCD( A, B, C );
bad_gcd = getGCD( bad_a, bad_b, bad_c );
}
wrongs.push(quadraticRoots(bad_a, bad_b, bad_c));
}
return wrongs;
})()
Sei f(x) = F_TEXT
.
Was sind die Nullstellen von f(x)
?
quadraticRoots(A, B, C)
WRONGS[0]
WRONGS[1]
WRONGS[2]
WRONGS[3]
WRONGS[4]
Um die Nullstellen der Funktion zu finden, müssen wir die Funktion null setzen: f(x) = 0
:
F_TEXT = 0
Mit der abc-Formel (Mitternachtsformel) können wir die Nullstellen von ax^2 + bx + c = 0
bestimmen:
x = \dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}
a = A, b = B, c = C
x = \dfrac{-B \pm \sqrt{expr(["^", B, 2]) - 4 \cdot A \cdot C}}{2 \cdot A}
x = \dfrac{-1*B \pm \sqrt{B*B - 4*A*C}}{2*A}
x = \dfrac{-1*B \pm formattedSquareRootOf(B*B-4*A*C)}{2*A}
quadraticRoots(A, B, C)